Source code for qilisdk.backends.backend

# Copyright 2025 Qilimanjaro Quantum Tech
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

from abc import ABC
from typing import TYPE_CHECKING, Callable, TypeVar, cast, overload

from qilisdk.functionals.functional_result import FunctionalResult
from qilisdk.functionals.sampling import Sampling
from qilisdk.functionals.time_evolution import TimeEvolution
from qilisdk.functionals.variational_program import VariationalProgram
from qilisdk.functionals.variational_program_result import VariationalProgramResult
from qilisdk.settings import get_settings

if TYPE_CHECKING:
    from qilisdk.functionals.functional import Functional, PrimitiveFunctional
    from qilisdk.functionals.sampling_result import SamplingResult
    from qilisdk.functionals.time_evolution_result import TimeEvolutionResult
    from qilisdk.noise_models.noise_model import NoiseModel

[docs] TResult = TypeVar("TResult", bound=FunctionalResult)
[docs] class Backend(ABC): def __init__(self) -> None: self._handlers: dict[type[Functional], Callable[[Functional, NoiseModel | None], FunctionalResult]] = { Sampling: lambda f, noise_model: self._execute_sampling(cast("Sampling", f), noise_model), TimeEvolution: lambda f, noise_model: self._execute_time_evolution(cast("TimeEvolution", f), noise_model), VariationalProgram: lambda f, noise_model: self._execute_variational_program( cast("VariationalProgram", f), noise_model ), } @overload
[docs] def execute(self, functional: Sampling, noise_model: NoiseModel | None = None) -> SamplingResult: ...
@overload def execute(self, functional: TimeEvolution, noise_model: NoiseModel | None = None) -> TimeEvolutionResult: ... @overload def execute( self, functional: VariationalProgram[Sampling], noise_model: NoiseModel | None = None ) -> VariationalProgramResult[SamplingResult]: ... @overload def execute( self, functional: VariationalProgram[TimeEvolution], noise_model: NoiseModel | None = None ) -> VariationalProgramResult[TimeEvolutionResult]: ... @overload def execute(self, functional: PrimitiveFunctional[TResult], noise_model: NoiseModel | None = None) -> TResult: ... def execute(self, functional: Functional, noise_model: NoiseModel | None = None) -> FunctionalResult: try: handler = self._handlers[type(functional)] except KeyError as exc: raise NotImplementedError( f"{type(self).__qualname__} does not support {type(functional).__qualname__}" ) from exc return handler(functional, noise_model) def _execute_sampling(self, functional: Sampling, noise_model: NoiseModel | None = None) -> SamplingResult: raise NotImplementedError(f"{type(self).__qualname__} has no Sampling implementation") def _execute_time_evolution( self, functional: TimeEvolution, noise_model: NoiseModel | None = None ) -> TimeEvolutionResult: raise NotImplementedError(f"{type(self).__qualname__} has no TimeEvolution implementation") def _execute_variational_program( self, functional: VariationalProgram[PrimitiveFunctional[TResult]], noise_model: NoiseModel | None = None ) -> VariationalProgramResult[TResult]: """Optimize a Parameterized Program (:class:`~qilisdk.functionals.variational_program.VariationalProgram`) and returns the optimal parameters and results. Args: functional (VariationalProgram): The variational program to be optimized. Returns: ParameterizedProgramResults: The final optimizer and functional results. Raises: ValueError: If the functional is not parameterized. """ def evaluate_sample(parameters: list[float]) -> float: param_names = functional.functional.get_parameter_names() param_bounds = functional.functional.get_parameter_bounds() new_param_dict = {} for i, param in enumerate(parameters): name = param_names[i] lower_bound, upper_bound = param_bounds[name] if lower_bound != upper_bound: new_param_dict[name] = param err = functional.check_parameter_constraints(new_param_dict) if err > 0: return err functional.functional.set_parameters(new_param_dict) results = self.execute(functional.functional) final_results = functional.cost_function.compute_cost(results) if isinstance(final_results, float): return final_results if isinstance(final_results, complex) and abs(final_results.imag) < get_settings().atol: return final_results.real raise ValueError(f"Unsupported result type {type(final_results)}.") if len(functional.functional.get_parameters()) == 0: raise ValueError("Functional provided is not parameterized.") optimizer_result = functional.optimizer.optimize( cost_function=evaluate_sample, init_parameters=list(functional.functional.get_parameters().values()), bounds=list(functional.functional.get_parameter_bounds().values()), store_intermediate_results=functional.store_intermediate_results, ) param_names = functional.functional.get_parameter_names() optimal_parameter_dict = {param_names[i]: param for i, param in enumerate(optimizer_result.optimal_parameters)} err = functional.check_parameter_constraints(optimal_parameter_dict) if err > 0: raise ValueError( "Optimizer Failed at finding an optimal solution. Check the parameter constraints or try with a different optimization method." ) functional.functional.set_parameters(optimal_parameter_dict) optimal_results: TResult = cast("TResult", self.execute(functional.functional)) return VariationalProgramResult(optimizer_result=optimizer_result, result=optimal_results)